Latest News:

Sunday, September 28, 2014

Three-dimensional space is given by an ordered triple of real numbers

In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

where the idea of independence is crucial. Space

In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.
 
Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.


Three coordinate axes are given, each perpendicular

In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.


Our three-dimensional space is viewed as embedded



In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Popular methods of describing the location



In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.



Another mathematical way of viewing three-dimensional space



In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.



Three coordinate axes are given, usually each perpendicular

In mathematics, analytic geometry (also called Cartesian geometry) describes any point in three-dimensional space by means of three coordinates. Three coordinate axes are given, usually each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.

Another mathematical way of viewing three-dimensional space is found in linear algebra, where the idea of independence is crucial. Space has three dimensions because the length of a box is independent of its width or breadth. In the technical language of linear algebra, space is three-dimensional because every point in space can be described by a linear combination of three independent vectors. In this view, space-time is four-dimensional because the location of a point in time is independent of its location in space.

Three-dimensional space has a number of properties that distinguish it from spaces of other dimension numbers. For example, at least three dimensions are required to tie a knot in a piece of string. Many of the laws of physics, such as the various inverse square laws, depend on dimension three.

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception. With the space  the topologists locally model all other 3-manifolds.

In physics, our three-dimensional space is viewed as embedded in four-dimensional spacetime, called Minkowski space (see special relativity). The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Orthogonality
In the familiar 3-dimensional space that we live in, there are three pairs of cardinal directions: north/south (latitude), east/west (longitude) and up/down (altitude). These pairs of directions are mutually orthogonal: They are at right angles to each other. Movement along one axis does not change the coordinate value of the other two axes. In mathematical terms, they lie on three coordinate axes, usually labelled x, y, and z. The z-buffer in computer graphics refers to this z-axis, representing depth in the 2-dimensional imagery displayed on the computer screen.

Coordinate systems
In mathematics, analytic geometry (also called Cartesian geometry) describes every point in three-dimensional space by means of three coordinates. Three coordinate axes are given, each perpendicular to the other two at the origin, the point at which they cross. They are usually labeled x, y, and z. Relative to these axes, the position of any point in three-dimensional space is given by an ordered triple of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the plane determined by the other two 2 axes.

Other popular methods of describing the location of a point in three-dimensional space include cylindrical coordinates and spherical coordinates, though there is an infinite number of possible methods. See Euclidean space.
Copyright © 2014 3D Mag All Right Reserved
^